Matematika

Pertanyaan

hitung turunan dari
[tex]y = 5x( {x}^{3} - 1) ^{4} [/tex]

2 Jawaban

  • jawab


    y =  5x . (x³ - 1)⁴

    y = uv
    y' = u'v + uv'

    y' = 5(x³ -1)⁴+  (5x)(4)(3x²)(x³ -1)³
    y' = 5(x³ -1)⁴ + 60x² (x³ -1)³
    y' = 5(x³-1)³ ( x³ -1 + 60x²)
    y' = 5(x³-1)³ (x³ + 60 x² - 1)

  • [tex]y = 5x( {x}^{3} - 1) ^{4} [/tex]
    gunukan aturan parsial

    misalnya

    u = 5x ==>>> u' = 5

    [tex]v = ({x}^{3} - 1) ^{4}[/tex]
    [tex] {v}^{1} = 4( {x}^{3} - 1 {)}^{3} 3 {x}^{2} \\ {v}^{1} = 12 {x}^{2} ( {x}^{3} - 1 {)}^{3} [/tex]
    y' = u' v + u v'

    [tex] = 5( {x}^{3} - 1 {)}^{4} + 5x.12x^{2} ( {x}^{3} - 1 {)}^{3} \\ \\ = 5( {x}^{3} - 1 {)}^{4} + 60 {x}^{2} ( {x}^{3} - 1 {)}^{3} [/tex]
    semoga paham dan bisa dijabarkan...

Pertanyaan Lainnya